

Mitől Smart egy City? Az MSZ EN 15232:2012 épületautomatikai szabvány alkalmazása új épületek tervezése és meglévők felújítása kapcsán.

What makes a City Smart? Application of EN15232 norm on design of new, and renovation of existing buildings.

Megatrends

"The world's toughest questions"

Climate change	It's getting warmer Highest CO_2 concentration since 350,000 years
Demographic change	We're living longer Average life expectancy increased from ~35 years to ~65 years within one century
Urbanization	There are more people in cities In 2050, 9 billion people will live on our planet and 5,5 billion will live in cities
Globalization	We're doing business in more places Ocean freight has increased over the past four decades from less than 6,000 billion ton-miles to over 27,500 billion ton-miles a year

Restricted $\ensuremath{\mathbb{C}}$ Siemens Switzerland Ltd 2013 All rights reserved.

2015-04-24

SIEMENS

The life cycle of buildings

40% life cycle cost of a building is consumed in energy

- International Energy Association, global basis, year 2002
- ** Dena Congress, Berlin, 2008

*

*** "Global Mapping of Greenhouse Gas Abatement Opportunities up to 2030", Building Sector deep dive, June 2007, Vattenfall AB, based on information from IEA, 2002, % of global greenhouse gas emissions; total 40 Gt CO2e

EU buildings

Share of buildings in final energy consumption in EU

Restricted © Siemens Switzerland Ltd 2013 All rights reserved.

P. Szakos.

🖶 Enerdata

Our customers' world is in transformation

The energy system as we know it

Today

Megatrends The basic idea of a smart grid

Tomorrow

Smart buildings are active elements in a smart grid

2015-04-24

Restricted © Siemens Switzerland Ltd 2013 All rights reserved.

Page 6

"Smart grid is an intelligent management of load between energy generation and consumption."

Smart buildings play a crucial role in Smart Grids and in energy efficiency

Smart building: Intelligent, integrated management of all building systems

Connected to the Smart Grid...

Full interactivity – Price signals, feedback, load reduction, etc.Storage capability – Balancing renewable and optimize energy priceProduction source – Sell back to the grid, reduce grid dependence, etc.

Disconnected from the Grid / Off-Grid...

Fully independent – Net zero energy, on-site generation, etc. Sustainable – Zero carbon, etc.

Zero net energy buildings are coming: CA 2020-2030 / EU 2018

Restricted © Siemens Switzerland Ltd 2013 All rights reserved.

Page 7 2015-04-24

Building Automation Systems leapfrogs boundaries towards Smart Buildings

P. Szakos.

EPBD – Definition of Energy Performance of Buildings MSZ EN 15232 : 2012

Energy performance of a building means the amount of energy actually consumed or estimated to meet the different needs associated with a standardized use of the building, which may include:

- Heating
- Hot water heating
- Cooling
- Ventilation
- Lighting
- Auxiliary energy

Restricted © Siemens Switzerland Ltd 2013 All rights reserved.

	Th	erma	l ener	gy	Ele	ctrica	ıl enei	ſġy
Class	D	С	В	А	D	С	В	А
Offices	1,51	1	0,80	0,70	1,10	1	0,93	0,87
Lecture hall	1,24	1	0,75	0,50	1,06	1	0,94	0,89
Education	1,20	1	0,88	0,80	1,07	1	0,93	0,86
Hospitals	1,31	1	0,91	0,86	1,05	1	0,98	0,96
Hotels	1,31	1	0,85	0,68	1,07	1	0,95	0,90
Restaurants	1,23	1	0,77	0,68	1,04	1	0,96	0,92
Wholesale & retail	1,56	1	0,73	0,60	1,08	1	0,95	0,91
Residential	1,10	1	0,88	0,81	1,08	1	0,93	0,92

Restricted © Siemens Switzerland Ltd 2013 All rights reserved.

Page 10 2015-04-24

Example Smart Building:

Energy saving in every type of building and business

Residential

27%

School

52%

Restaurant

41%

Restricted $\ensuremath{\mathbb{C}}$ Siemens Switzerland Ltd 2013 All rights reserved.

Page 11 2015-04-24

Typical categorization of energy saving potentials in buildings

End user drivers	Category	Measures, e.g.	Saving potential (%)	Amortization (years)	
 Legislation 	Building	 Installation and optimized tuning of energy functions Optimization during operation by 			
 Standards & codes 	automation	 Efficient use of BACS and weak point analysis Dynamic energy management 	5-30	0-5	
 Cost savings CO₂ emissions reduction 	Technical installations	 HVAC, refrigeration, lighting Controls, motors, actuators, Power generation 	10-60	2-10	
 Labels, certificates 	Building envelop	Insulation, windows,Thermal bridges, construction physics	>50	10-60	
• Image	Conclusion:	Invest in Smart building automati	ion first! → Res	sults with	

highest ROI within shortest time

Products for building technology A unique portfolio in width, depth and quality

An example

Community holiday home at lake Balaton, 450sqm, heating: radiators + gas boiler

The heating of the building was "operated" by a landlord until 2012

From 2012 they changed to room thermostat control, with temporary local supervision

In 2013, the automation was upgraded to electronic, individual room control, with WEB based remote management He moved in...

The visitors arived into a cold house for the weekend. Lack of comfort.

SIEMENS

Full control over building's operation, and cost.

Restricted © Siemens Switzerland Ltd 2013 All rights reserved.

Page 14 2015-04-24

SIEMENS

An example

By using a category "A" building automation system, instead of "D" + avoiding negative human factors, the consumption of the house decreased by 87%

Payback period is less than a year

Gas consumption in m3 / heating periods

SMART... people, design, solution, building, city, planet...

